3214 reflections with  $I > 2\sigma(I)$ 

frequency: 120 min

intensity decay: 1%

 $R_{\rm int} = 0.014$ 3 standard reflections

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

## 6-Chloro-1-(3,5-dimethylphenylsulfonyl)-1H-benzimidazol-2(3H)-one

#### Fiorella Meneghetti,<sup>a</sup>\* Gabriella Bombieri,<sup>a</sup> Patrizia Logoteta<sup>b</sup> and Laura De Luca<sup>b</sup>

<sup>a</sup>Institute of Pharmaceutical and Toxicological Chemistry, "P. Pratesi", University of Milano, via L. Mangiagalli, 25, 20133-Milano, Italy, and <sup>b</sup>Department of Pharmaceutical Chemistry, University of Messina, viale Annunziata, 98168-Messina, Italy

Correspondence e-mail: fiorella.meneghetti@unimi.it

Received 28 November 2008; accepted 15 December 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma$ (C–C) = 0.005 Å; R factor = 0.057; wR factor = 0.133; data-to-parameter ratio = 18.3.

The title compound,  $C_{15}H_{13}ClN_2O_3S$ , is one of a series of  $N^1$ benzyl-1,3-dihydro-2H-benzimidazol-2-one derivatives, a new class of non-nucleoside HIV-1 reverse transcriptase inhibitors. The dihedral angle between the two pharmacophoric groups, the dimethylbenzene ring and the benzimidazolone ring system, is 88  $(1)^{\circ}$ , giving a butterfly-like conformation to the molecule. The molecular packing is characterized by a bifurcated N-H···(O,O) hydrogen bond and short  $Cl \cdot \cdot O$ contacts of 3.122 (2) Å. In addition,  $\pi - \pi$  stacking of the benzimidazolone rings is also present, with interplanar separations of 3.95 (1) Å.

#### **Related literature**

For the role of the substituents on the benzene nucleus in anti-HIV-1 compounds, see: Barreca et al. (2007). For related literature, see: Barreca et al. (2005); Beddoes et al. (1986); Liu et al. (2007).



### **Experimental**

## Crystal data

| V = 1521.3 (6) Å <sup>3</sup>          |
|----------------------------------------|
| Z = 4                                  |
| Mo Kα radiation                        |
| $\mu = 0.40 \text{ mm}^{-1}$           |
| T = 293 (2)  K                         |
| $0.5 \times 0.4 \times 0.3 \text{ mm}$ |
|                                        |
|                                        |
|                                        |

#### Data collection

Enraf-Nonius CAD-4 diffractometer Absorption correction: none 3964 measured reflections 3634 independent reflections

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.057$ | 199 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.133$               | H-atom parameters constrained                              |
| S = 1.19                        | $\Delta \rho_{\rm max} = 0.23 \text{ e } \text{\AA}^{-3}$  |
| 3634 reflections                | $\Delta \rho_{\rm min} = -0.27 \text{ e } \text{\AA}^{-3}$ |

#### Table 1 Hydrogen-bond geometry (Å, °)

| nyurogen                    | bolid geometry (11, | ).                      |
|-----------------------------|---------------------|-------------------------|
| $D - H \cdot \cdot \cdot A$ | D-H                 | $H \cdot \cdot \cdot A$ |

 $D \cdot \cdot \cdot A$  $D - H \cdot \cdot \cdot A$  $N2-H2 \cdot \cdot \cdot O1^{i}$ 2.852 (3) 135 0.86 2.18  $N2 - H2 \cdot \cdot \cdot O2^{i}$ 0.86 2.39 3.075 (3) 138

Symmetry code: (i)  $x, -y + \frac{1}{2}, z + \frac{1}{2}$ .

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2178).

#### References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Barreca, L. M., Rao, A., De Luca, L., Iraci, N., Monforte, A. M., Maga, G., De Clercq, E., Pannecouque, C., Balzarini, J. & Chimirri, A. (2007). Bioorg. Med. Chem. Lett. 17, 1956-1960.
- Barreca, L. M., Rao, A., De Luca, L., Zappala, M., Monforte, A. M., Maga, G., Pannecouque, C., De Clercq, E., Balzarini, J., Chimirri, A. & Monforte, P. (2005). J. Med. Chem. 48, 3433-3437.
- Beddoes, R. L., Dalton, L., Joule, J. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787-797.

Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
- Liu, Y., Gribble, G. W. & Jasinski, J. P. (2007). Acta Cryst. E63, 0735-0737.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2009). E65, o159 [doi:10.1107/S1600536808042694]

#### 6-Chloro-1-(3,5-dimethylphenylsulfonyl)-1H-benzimidazol-2(3H)-one

#### F. Meneghetti, G. Bombieri, P. Logoteta and L. De Luca

#### Comment

In the course of previous studies on new anti-HIV agents, some of us reported the synthesis and anti-HIV activity of a series of N1-benzyl-1,3-dihydro-2H-benzimidazol-2-ones, a new class of non-nucleoside HIV-1 reverse transcriptase inhibitors (NNRTIs) (Barreca et al. 2005). More recently molecular modeling studies led to the discovery of N1-phenylsulfonyl-1.3dihydro-2H-benzimidazol-2-ones as highly potent NNRTIs active at nanomolar concentration (Barreca et al. 2007). In this paper we report the results of the X-ray structure determination of 6-chloro-1-(3,5-dimethylphenylsulfonyl)-1,3-dihydro-2H-benzimidazol-2-one (I) the most potent derivative of the series, active against wild-type and mutant HIV-1 strains (Barreca et al., 2007). On this respect, its geometrical features defined by X-ray analysis (Fig. 1), could be an useful tool to understand the structure-activity relationship of this class of compounds. The bicyclic part of the molecule consists of an aromatic ring (C2 to C7) and an imidazol-2(3H)-one nucleus approximately planar. This bicyclic fragment makes a dihedral angle of 88 (1)° with the dimethylphenyl ring. Such geometry is in agreement with the best docked conformation previously calculated (Barreca et al., 2007) and match well with the pharmacophoric model proposed for the interactions with the macromolecule. As previously observed in other N-(phenylsulfonyl)indoles (Liu et al., 2007) and N-phenylsulfonamides, (Beddoes et al., 1986) the N atom lone pair eclipses the sulfonyl group; accordingly the corresponding torsion angle O(2)—S(1)—N(1)—C(7) is 48.4 (2)°. In the crystal packing are present two intermolecular hydrogen bonds (Fig. 2) between N2—H2 and O1<sup>I</sup> at a distance of 2.18 (2) Å, angle 134.2 (2)° and N2—H2 with O2<sup>I</sup> of 2.39 (2) Å, angle 137.9 (4)°, forming a biforcated linkage with the adjacent molecule at x; 1/2 - y; z + 1/2. The crystal structure is also stabilized by  $\pi$ - $\pi$  stacking of the benzimidazolone moieties [3.95 (1) Å] and by short intermolecular Cl(1)···O(3)<sup>I</sup> contacts [3.122 (2) Å].

#### Experimental

The compound I has been synthesized as previously reported (Barreca *et al.*, 2007). Single crystals were obtained at room temperature by slow evaporation of a CHCl<sub>3</sub> solution.

#### Refinement

All non-H-atoms were refined anisotropically. Hydrogen atoms were introduced at calculated positions, in their described geometries and allowed to ride on the attached carbon atom with fixed isotropic thermal parameters (1.2Ueq and 1.5Ueq of the parent carbon atom for aromatic H-atoms and methyls H-atoms, respectively).

**Figures** 



Fig. 1. : The molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 40% probability level.



#### 6-Chloro-1-(3,5-dimethylphenylsulfonyl)-1H-benzimidazol-2(3H)-one

| Crystal data                                                      |                                                 |
|-------------------------------------------------------------------|-------------------------------------------------|
| C <sub>15</sub> H <sub>13</sub> ClN <sub>2</sub> O <sub>3</sub> S | $F_{000} = 696$                                 |
| $M_r = 336.78$                                                    | $D_{\rm x} = 1.470 {\rm ~Mg~m}^{-3}$            |
| Monoclinic, $P2_1/c$                                              | Mo $K\alpha$ radiation<br>$\lambda = 0.71073$ Å |
| Hall symbol: -P 2ybc                                              | Cell parameters from 25 reflections             |
| a = 12.173 (3) Å                                                  | $\theta = 9 - 10^{\circ}$                       |
| <i>b</i> = 14.036 (3) Å                                           | $\mu = 0.40 \text{ mm}^{-1}$                    |
| c = 8.949 (2) Å                                                   | T = 293 (2)  K                                  |
| $\beta = 95.77 \ (2)^{\circ}$                                     | Prism, colourless                               |
| V = 1521.3 (6) Å <sup>3</sup>                                     | $0.5 \times 0.4 \times 0.3 \text{ mm}$          |
| <i>Z</i> = 4                                                      |                                                 |
|                                                                   |                                                 |
| Data collection                                                   |                                                 |
| Enraf–Nonius CAD-4<br>diffractometer                              | $\theta_{max} = 28.0^{\circ}$                   |
| Monochromator: graphite                                           | $\theta_{\min} = 3.3^{\circ}$                   |
| T = 293(2)  K                                                     | $h = -16 \rightarrow 15$                        |
| Non–profiled $\omega/2\theta$ scans                               | $k = 0 \rightarrow 18$                          |
| Absorption correction: none                                       | $l = 0 \rightarrow 11$                          |
| 3964 measured reflections                                         | 3 standard reflections                          |
| 3634 independent reflections                                      | every 120 min                                   |
| 3214 reflections with $I > 2\sigma(I)$                            | intensity decay: 1%                             |

Refinement

 $R_{\rm int} = 0.014$ 

Refinement on  $F^2$ 

Secondary atom site location: difference Fourier map

| Least-squares matrix: full                                     | Hydrogen site location: inferred from neighbouring sites                            |
|----------------------------------------------------------------|-------------------------------------------------------------------------------------|
| $R[F^2 > 2\sigma(F^2)] = 0.057$                                | H-atom parameters constrained                                                       |
| $wR(F^2) = 0.133$                                              | $w = 1/[\sigma^2(F_o^2) + (0.0188P)^2 + 1.7615P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| <i>S</i> = 1.19                                                | $(\Delta/\sigma)_{\text{max}} = 0.003$                                              |
| 3634 reflections                                               | $\Delta \rho_{max} = 0.23 \text{ e } \text{\AA}^{-3}$                               |
| 199 parameters                                                 | $\Delta \rho_{\rm min} = -0.27 \ e \ {\rm \AA}^{-3}$                                |
| Primary atom site location: structure-invariant direct methods | Extinction correction: none                                                         |

# Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

|     | x            | У            | Ζ            | $U_{\rm iso}*/U_{\rm eq}$ |
|-----|--------------|--------------|--------------|---------------------------|
| S1  | 0.78957 (6)  | 0.45343 (4)  | 0.18441 (6)  | 0.04124 (17)              |
| Cl1 | 0.89540 (9)  | 0.73749 (6)  | 0.67132 (11) | 0.0776 (3)                |
| O3  | 0.81132 (18) | 0.55252 (13) | 0.1756 (2)   | 0.0524 (5)                |
| 01  | 0.80048 (19) | 0.25911 (13) | 0.3298 (2)   | 0.0545 (5)                |
| N2  | 0.85398 (19) | 0.32965 (15) | 0.5597 (2)   | 0.0426 (5)                |
| H2  | 0.8602       | 0.2802       | 0.6166       | 0.051*                    |
| N1  | 0.83211 (18) | 0.42285 (14) | 0.3607 (2)   | 0.0371 (4)                |
| O2  | 0.83888 (19) | 0.38810 (15) | 0.0896 (2)   | 0.0567 (5)                |
| C2  | 0.8705 (2)   | 0.42257 (18) | 0.6105 (3)   | 0.0387 (5)                |
| C8  | 0.6470 (2)   | 0.4341 (2)   | 0.1704 (3)   | 0.0508 (6)                |
| C7  | 0.85543 (19) | 0.48366 (17) | 0.4866 (2)   | 0.0351 (5)                |
| C1  | 0.8269 (2)   | 0.32671 (17) | 0.4093 (3)   | 0.0417 (5)                |
| C4  | 0.9024 (2)   | 0.5555 (2)   | 0.7717 (3)   | 0.0519 (7)                |
| H4  | 0.9177       | 0.5817       | 0.8670       | 0.062*                    |
| C6  | 0.8637 (2)   | 0.58080 (18) | 0.5011 (3)   | 0.0425 (5)                |
| H6  | 0.8547       | 0.6215       | 0.4188       | 0.051*                    |
| C3  | 0.8955 (2)   | 0.4574 (2)   | 0.7537 (3)   | 0.0464 (6)                |
| Н3  | 0.9074       | 0.4166       | 0.8356       | 0.056*                    |
| C5  | 0.8864 (2)   | 0.61419 (19) | 0.6469 (3)   | 0.0491 (6)                |
| C13 | 0.6006 (3)   | 0.3614 (3)   | 0.0822 (4)   | 0.0734 (10)               |
| H13 | 0.6452       | 0.3204       | 0.0334       | 0.088*                    |
| С9  | 0.5842 (3)   | 0.4951 (3)   | 0.2471 (4)   | 0.0671 (9)                |
|     |              |              |              |                           |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

# supplementary materials

| Н9   | 0.6174     | 0.5437     | 0.3060      | 0.081*      |
|------|------------|------------|-------------|-------------|
| C11  | 0.4255 (4) | 0.4091 (4) | 0.1443 (5)  | 0.0941 (15) |
| H11  | 0.3495     | 0.3998     | 0.1362      | 0.113*      |
| C10  | 0.4705 (3) | 0.4829 (4) | 0.2352 (5)  | 0.0858 (12) |
| C12  | 0.4884 (4) | 0.3499 (3) | 0.0666 (6)  | 0.0954 (15) |
| C15  | 0.4332 (5) | 0.2721 (4) | -0.0324 (8) | 0.152 (2)   |
| H15A | 0.3928     | 0.2305     | 0.0274      | 0.229*      |
| H15B | 0.4884     | 0.2362     | -0.0772     | 0.229*      |
| H15C | 0.3835     | 0.3005     | -0.1099     | 0.229*      |
| C14  | 0.4004 (4) | 0.5506 (5) | 0.3165 (7)  | 0.1339 (17) |
| H14A | 0.4464     | 0.5843     | 0.3924      | 0.201*      |
| H14B | 0.3454     | 0.5152     | 0.3626      | 0.201*      |
| H14C | 0.3650     | 0.5953     | 0.2462      | 0.201*      |

## Atomic displacement parameters $(\text{\AA}^2)$

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| S1  | 0.0549 (4)  | 0.0401 (3)  | 0.0290 (3)  | 0.0002 (3)   | 0.0055 (2)   | 0.0037 (2)   |
| Cl1 | 0.1068 (7)  | 0.0451 (4)  | 0.0801 (6)  | -0.0057 (4)  | 0.0058 (5)   | -0.0229 (4)  |
| O3  | 0.0702 (13) | 0.0436 (10) | 0.0431 (10) | -0.0050 (9)  | 0.0043 (9)   | 0.0112 (8)   |
| 01  | 0.0876 (15) | 0.0359 (9)  | 0.0394 (10) | -0.0034 (9)  | 0.0039 (9)   | -0.0019 (8)  |
| N2  | 0.0592 (13) | 0.0362 (10) | 0.0325 (10) | 0.0004 (9)   | 0.0044 (9)   | 0.0061 (8)   |
| N1  | 0.0522 (12) | 0.0326 (9)  | 0.0266 (9)  | 0.0025 (8)   | 0.0046 (8)   | 0.0029 (7)   |
| O2  | 0.0803 (14) | 0.0593 (12) | 0.0319 (9)  | 0.0065 (11)  | 0.0119 (9)   | -0.0046 (8)  |
| C2  | 0.0415 (12) | 0.0424 (13) | 0.0326 (11) | -0.0008 (10) | 0.0060 (9)   | 0.0002 (9)   |
| C8  | 0.0551 (16) | 0.0537 (16) | 0.0421 (14) | -0.0006 (13) | -0.0025 (12) | 0.0088 (12)  |
| C7  | 0.0357 (11) | 0.0383 (12) | 0.0316 (11) | 0.0015 (9)   | 0.0055 (8)   | -0.0022 (9)  |
| C1  | 0.0570 (15) | 0.0357 (12) | 0.0327 (11) | 0.0021 (11)  | 0.0068 (10)  | 0.0021 (9)   |
| C4  | 0.0551 (16) | 0.0606 (17) | 0.0398 (13) | -0.0041 (13) | 0.0039 (11)  | -0.0130 (12) |
| C6  | 0.0491 (14) | 0.0375 (12) | 0.0410 (13) | 0.0005 (11)  | 0.0051 (10)  | -0.0003 (10) |
| C3  | 0.0521 (15) | 0.0540 (15) | 0.0332 (12) | -0.0012 (12) | 0.0040 (10)  | 0.0017 (11)  |
| C5  | 0.0524 (15) | 0.0400 (13) | 0.0557 (16) | -0.0051 (11) | 0.0096 (12)  | -0.0138 (12) |
| C13 | 0.076 (2)   | 0.0580 (19) | 0.080 (2)   | -0.0021 (17) | -0.0227 (19) | 0.0045 (17)  |
| C9  | 0.0559 (18) | 0.089 (3)   | 0.0559 (18) | -0.0019 (17) | 0.0029 (14)  | -0.0021 (17) |
| C11 | 0.060 (2)   | 0.121 (4)   | 0.096 (3)   | -0.021 (2)   | -0.016 (2)   | 0.039 (3)    |
| C10 | 0.063 (2)   | 0.123 (4)   | 0.072 (2)   | 0.008 (2)    | 0.0080 (19)  | 0.015 (2)    |
| C12 | 0.081 (3)   | 0.079 (3)   | 0.117 (4)   | -0.011 (2)   | -0.033 (3)   | 0.016 (3)    |
| C15 | 0.138 (5)   | 0.115 (4)   | 0.186       | -0.035 (4)   | -0.075 (4)   | -0.004 (4)   |
| C14 | 0.080 (3)   | 0.185       | 0.140 (5)   | 0.021 (4)    | 0.027 (3)    | -0.019 (5)   |

### Geometric parameters (Å, °)

| S1—O3  | 1.419 (2)   | C6—C5   | 1.388 (4) |
|--------|-------------|---------|-----------|
| S1—O2  | 1.423 (2)   | С6—Н6   | 0.9300    |
| S1—N1  | 1.6667 (19) | С3—Н3   | 0.9300    |
| S1—C8  | 1.749 (3)   | C13—C12 | 1.368 (6) |
| Cl1—C5 | 1.746 (3)   | С13—Н13 | 0.9300    |
| O1—C1  | 1.210 (3)   | C9—C10  | 1.388 (5) |
| N2—C1  | 1.354 (3)   | С9—Н9   | 0.9300    |

| N2—C2                         | 1.389 (3)   | C11—C12       | 1.           | 367 (7)  |
|-------------------------------|-------------|---------------|--------------|----------|
| N2—H2                         | 0.8600      | C11—C10       | 1.           | 395 (7)  |
| N1—C7                         | 1.419 (3)   | C11—H11       | 0.           | 9300     |
| N1—C1                         | 1.421 (3)   | C10-C14       | 1.           | 512 (7)  |
| C2—C3                         | 1.376 (3)   | C12—C15       | 1.           | 520 (7)  |
| C2—C7                         | 1.399 (3)   | C15—H15A      | 0.           | 9600     |
| C8—C13                        | 1.375 (4)   | C15—H15B      | 0.           | 9600     |
| C8—C9                         | 1.376 (5)   | C15—H15C      | 0.           | 9600     |
| C7—C6                         | 1.372 (3)   | C14—H14A      | 0.           | 9600     |
| C4—C5                         | 1.385 (4)   | C14—H14B      | 0.           | 9600     |
| C4—C3                         | 1.389 (4)   | C14—H14C      | 0.           | 9600     |
| С4—Н4                         | 0.9300      |               |              |          |
| O3—S1—O2                      | 120.41 (13) | С4—С3—Н3      | 12           | 21.1     |
| O3—S1—N1                      | 105.25 (11) | C4—C5—C6      | 12           | 23.8 (3) |
| O2—S1—N1                      | 106.81 (11) | C4—C5—Cl1     | 11           | 9.1 (2)  |
| O3—S1—C8                      | 109.74 (14) | C6—C5—Cl1     | 11           | 7.1 (2)  |
| O2—S1—C8                      | 109.40 (14) | C12—C13—C8    | 11           | 9.6 (4)  |
| N1—S1—C8                      | 103.86 (12) | С12—С13—Н13   | 12           | 20.2     |
| C1—N2—C2                      | 111.5 (2)   | С8—С13—Н13    | 12           | 20.2     |
| C1—N2—H2                      | 124.2       | C8—C9—C10     | 11           | 9.0 (4)  |
| C2—N2—H2                      | 124.2       | С8—С9—Н9      | 12           | 20.5     |
| C7—N1—C1                      | 109.87 (18) | С10—С9—Н9     | 12           | 20.5     |
| C7—N1—S1                      | 127.94 (16) | C12—C11—C10   | 12           | 2.8 (4)  |
| C1—N1—S1                      | 120.99 (16) | C12—C11—H11   | 11           | 8.6      |
| C3—C2—N2                      | 130.5 (2)   | C10-C11-H11   | 11           | 8.6      |
| C3—C2—C7                      | 121.3 (2)   | C9—C10—C11    | 11           | 7.8 (4)  |
| N2—C2—C7                      | 108.2 (2)   | C9-C10-C14    | 11           | 9.5 (5)  |
| C13—C8—C9                     | 122.0 (3)   | C11—C10—C14   | 12           | 2.7 (4)  |
| C13—C8—S1                     | 120.2 (3)   | C11—C12—C13   | 11           | 8.7 (4)  |
| C9—C8—S1                      | 117.7 (2)   | C11—C12—C15   | 11           | .9.7 (5) |
| C6—C7—C2                      | 122.1 (2)   | C13—C12—C15   | 12           | 21.5 (5) |
| C6—C7—N1                      | 132.8 (2)   | C12—C15—H15A  | 10           | 19.5     |
| C2—C7—N1                      | 105.1 (2)   | C12—C15—H15B  | 10           | )9.5     |
| O1—C1—N2                      | 129.2 (2)   | H15A—C15—H15B | 10           | )9.5     |
| 01—C1—N1                      | 125.6 (2)   | C12—C15—H15C  | 10           | 19.5     |
| N2—C1—N1                      | 105.1 (2)   | H15A-C15-H15C | 10           | )9.5     |
| C5—C4—C3                      | 119.6 (2)   | H15B-C15-H15C | 10           | )9.5     |
| C5—C4—H4                      | 120.2       | C10-C14-H14A  | 10           | 19.5     |
| C3—C4—H4                      | 120.2       | C10-C14-H14B  | 10           | )9.5     |
| C7—C6—C5                      | 115.5 (2)   | H14A—C14—H14B | 10           | 19.5     |
| С7—С6—Н6                      | 122.3       | C10-C14-H14C  | 10           | 19.5     |
| С5—С6—Н6                      | 122.3       | H14A—C14—H14C | 10           | 19.5     |
| C2—C3—C4                      | 117.7 (2)   | H14B-C14-H14C | 10           | 19.5     |
| С2—С3—Н3                      | 121.1       |               |              |          |
| Hydrogen-bond geometry (Å, °) |             |               |              |          |
| D—H····A                      | D—H         | H···A         | $D \cdots A$ | D—H…A    |

2.18

0.86

N2—H2···O1<sup>i</sup>

2.852 (3)

135 (1)

# supplementary materials

| N2—H2···O2 <sup>i</sup>                        | 0.86 | 2.39 | 3.075 (3) | 138 (1) |
|------------------------------------------------|------|------|-----------|---------|
| Symmetry codes: (i) $x$ , $-y+1/2$ , $z+1/2$ . |      |      |           |         |

Fig. 1



